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Abstract. Catchment and riparian degradation has resulted in declining ecosystem health
of streams worldwide. With restoration a priority in many regions, there is an increasing
interest in the scale at which land use influences stream ecosystem health. Our goal was to use
a substantial data set collected as part of a monitoring program (the Southeast Queensland,
Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six
years) to identify the spatial scale of land use, or the combination of spatial scales, that most
strongly influences overall ecosystem health. In addition, we aimed to determine whether the
most influential scale differed for different aspects of ecosystem health. We used linear-mixed
models and a Bayesian model-averaging approach to generate models for the overall
aggregated ecosystem health score and for each of the five component indicators (fish,
macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score.

Dense forest close to the survey site, mid-dense forest in the hydrologically active near-
stream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach
scale were all significant in explaining ecosystem health, suggesting an overriding influence of
forest cover, particularly close to the stream. Season and antecedent rainfall were also
important explanatory variables, with some land-use variables showing significant seasonal
interactions. There were also differential influences of land use for each of the component
indicators. Our approach is useful given that restoring general ecosystem health is the focus of
many stream restoration projects; it allowed us to predict the scale and catchment position of
restoration that would result in the greatest improvement of ecosystem health in the regions
streams and rivers. The models we generated suggested that good ecosystem health can be
maintained in catchments where 80% of hydrologically active areas in close proximity to the
stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
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INTRODUCTION

It has long been recognized that stream ecosystems

are strongly influenced by the landscapes through which

they flow (Hynes 1975, Allan 2004). The climate,

topography, geology, and vegetation of a catchment

drive the geomorphic processes that shape the channel

network and supply water, sediment, and woody debris

(Frissell et al. 1986). These catchment features influence

water chemistry and ecosystem processes in streams and

rivers, including the supply of nutrients and carbon and,

in part, the light regime that controls the production of

aquatic plants: ‘‘in every respect, the valley rules the

stream’’ (Hynes 1975). With such strong linkages

between catchments and their streams it is not surprising

that changes in catchment land use can have significant

impacts on stream-ecosystem health (Allan 2004).

With increasing catchment and riparian degradation

there has been an increasing interest in the scale at which

land use within stream catchments influences aspects of

stream ecosystem health (Allan 2004). Catchment-scale

forest cover has been shown to influence fish, macroin-

vertebrate and algal biomass (Stephenson and Morin

2009), biotic diversity (Sandin and Johnson 2004,

Weijters et al. 2009), instream water quality (Johnson

et al. 1997, Tong and Chen 2002), benthic primary

production (Fellows et al. 2006), and instream nutrients

(Udy et al. 2006). In at least one study, catchment-scale

forest cover was more strongly correlated with ecolog-

ical response than the riparian or buffer scale (Stephen-

son and Morin 2009). Although the general pattern of

reduced forest cover associated with decreased biodiver-

sity holds in most instances, the species level response

can be complex, with cleared landscapes and the

resulting increased light availability, and often increased

nutrient runoff, found to favor some species over others

(Sonoda et al. 2001).
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Removal of forest cover in catchments and riparian

zones is only one of many land-use impacts on streams

(Vörösmarty et al. 2010). Urbanization and land-use

change, from grazing or pasture land to intensive

cropping and irrigated agriculture, also have negative

outcomes for stream ecosystem health (Walsh et al.

2007), where ecosystem health is defined in terms of

ecological integrity: the capacity of the river or stream to

maintain ecosystem structure and function (Karr 1999).

In urban areas, the increase in the catchment area

covered by impervious surfaces, and the resulting

changes in hydrology have been attributed to observed

declines in stream macroinvertebrate diversity (Walsh et

al. 2007) and loss of specific taxa (Utz et al. 2009).

Most studies of land-use impacts on stream ecosystem

health have focused on specific indices of ecosystem

health, such as macroinvertebrate diversity (Stephenson

and Morin 2009), fish abundance (Kennard et al. 2006),

water quality (Tong and Chen 2002), stream ecosystem

processes (Fellows et al. 2006), and nutrients (Udy et al.

2006). These indices are likely to respond to land-use

change or disturbance gradients at different spatial

scales given the diverse processes driving them (Bunn et

al. 2010). In some cases, a single score is used to assess

stream health, which focuses on one ecosystem function,

or group. Examples of this approach include the

AusRivAS score using macroinvertebrates in Australia

(Smith et al. 1999) and RIVPACS in the UK (Wright et

al. 1993), or the index of biotic integrity, often used for

assessing health using fish (Harris and Silveira 1999).

While these approaches assess health using one taxo-

nomic group, it is becoming more common to use a suite

of normalized ecosystem health indices derived from

multiple taxonomic groups and ecosystem processes,

which are then aggregated to provide an overall

assessment of ecosystem health as a single ‘‘score’’

(Williams et al. 2009, Bunn et al. 2010). In Victoria,

Australia, stream health is reported by the Index of

Stream Condition (ISC) (Ladson et al. 1999), which

incorporates measures of hydrology, physical channel

form, characteristics of the riparian or floodplain

vegetation, water quality, and macroinvertebrates.

Although individual indices have been shown to respond

to land-use change, it is unclear whether aggregated

scores representing ecosystem health are similarly

responsive. Yet, catchment and riparian restoration

activities are often spatially targeted to improve general

stream health, as quantified by an aggregated score,

rather than focusing on specific taxa or taxa groups.

In South-east Queensland (SEQ), Australia, the

Ecological Health Monitoring Program (EHMP) re-

ports on the ecological health of the region’s streams

and rivers once a year via a report card grading process

that reflects a single EHMP score generated from 14

separate indices (Bunn et al. 2010, Healthy Waterways

Partnership 2012). These individual indices were origi-

nally selected because they were correlated with a

gradient of stream disturbance, which included catch-

ment, riparian, and reach-scale land-use change, channel

condition, and site-scale water quality (Bunn et al. [2010]

for a complete description). For example, the thermal

regime of small SEQ streams responds to changes in

local shading at the scale of hundreds of meters of

channel (Rutherford et al. 2004), while benthic-algal

biomass is largely explained by riparian canopy cover at

the local scale (,100 m reach; Mosisch et al. 2001). In

contrast, other ecosystem-health indicators appear to be

more strongly influenced by broader-scale land use or

land use at a combination of scales. A significant

percentage of the observed variation in benthic produc-

tion is explained by the proportion of pasture land in the

upstream catchment (Bunn et al. 1999) as well as local

riparian condition (Fellows et al. 2006). The abundance

and biomass of alien fish recorded in SEQ streams were

also explained by a combination of riparian, reach-scale,

and catchment-scale influences (Kennard et al. 2005). In

addition, the spatial location of land-use patches in the

upstream catchment with respect to the assessment site

or the stream also appears to influence indices of

ecosystem health (Peterson et al. 2011).

In this paper, we use a data set collected over six years

to explore the influence of land use at three spatial scales

on stream ecosystem health. Our goal was to identify the

scale of land use that most strongly influenced the

overall aggregated ecosystem health score and to

determine whether the most influential scale differed

for the five ecosystem-health indicators that make up the

score. We then used this knowledge to recommend the

scale of catchment restoration that would be required to

improve the ecosystem health of the regions streams and

rivers.

METHODS

Study area

The SEQ region in Australia (22 353 km2) stretches

from the Noosa River in the north to the Gold Coast

catchments in the south and west to the top of the

Brisbane River catchment just east of the city of

Toowoomba; it covers six major river catchments and

includes the 15 major rivers of the Moreton Bay region

(Fig. 1; Abal et al. 2005). The SEQ region is subtropical

with a median annual rainfall of 1500 mm (Abal et al.

2005); the majority of this occurs during the hot wet

summers, which are contrasted by cool dry winters. SEQ

also has one of the fastest growing populations in

Australia, with just over 2 million people, increasing by

2.9% per annum (Abal et al. 2005). Less than 60% of the

endemic vegetation remains in many subcatchments and

riparian zones have been heavily disturbed (Bunn et al.

1999). However, there are also extensive areas of

conservation, with managed and plantation forests

throughout the region, particularly along the southern

and western regional boundary, the Lamington Plateau

and the Western Boundary Ranges (Abal et al. 2005).

Headwater streams are typically characterized by
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forested land use, while lowland streams and rivers are

dominated by agricultural and urban land use.

The Freshwater Ecological Health Monitoring
Program (EHMP)

The Freshwater EHMP was implemented in 2002 and
now forms the basis for the annual regional Report Card

for the region’s waterways (Bunn et al. 2010). Freshwa-
ter ecosystem-health data are collected biannually at 127
sites (as of 2008), during the austral spring (pre-wet) and

austral autumn (post-wet). These sites are representative
of headwaters and middle sized streams (second- and
third-order streams) in the region and are distributed

throughout major land-use types to enable reporting of
stream ecosystem health at a regional scale. Data are

collected for five groups of indicators: water quality,
fish, macroinvertebrate, ecosystem processes, and nutri-
ent indicators, with each indicator type comprised of

multiple indices (Fig. 2; Bunn et al. 2010). The annual
EHMP site score represents an aggregation of 14
ecosystem health indices, collected over two seasons

(Fig. 2). Data for each index are converted to a
standardized score by comparing the observed value at
a site with a reference condition (Bunn et al. 2010).

Standardized scores range from 0 (maximum deviation
from reference condition) to 1 (equal to reference
condition). Standardized scores for the indices, within

indicator type, are averaged to create a score between 0

and 1 for each indicator at a site. The scores for all five

indicators are then averaged to create a seasonal score
between 0 and 1 for a site. The two seasonal site scores
for each year starting in the austral spring (e.g., spring

2003 and autumn 2004) are averaged to give an annual
site score. These annual site scores are then averaged
across each catchment and converted into a report card

grade (Fig. 2), which is released as part of an annual
report card for ecosystem health in SEQ streams (Bunn
et al. 2010, Healthy Waterways Partnership 2012). Note

that, when data are missing, the scores are calculated in
the same way using the remaining data; this however
was not a systematic problem for any one indicator

apart from the nutrient indicator, which requires the
collection on an algal sample for the determination of

d15N, and this can be difficult after periods of high flow.
For this analysis, site scores for each season (pre-wet
and post-wet) were used from 116 EHMP sites sampled

between the years 2002 and 2008.

GIS methods

Land use and land-cover (LULC) characteristics were
calculated for 116 EHMP sites at catchment, riparian,
and reach scales (Fig. 3). The catchment scale represents

the entire drainage area upstream from each EHMP
survey site (Fig. 3a), while the riparian scale represents
the land within the catchment located within 25 m of the

stream (Fig. 3b). The reach scale is a subset of the

FIG. 1. Ecological Health Monitoring Program (EHMP) survey sites are collected throughout 19 EHMP reporting regions in
Southeast Queensland, Australia.
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riparian scale and only includes the riparian area in the

25 m buffer from the EHMP site (0 m) extending

upstream for 1000 m (Fig. 3c). The stream data were

supplied by the Moreton Bay Waterways and Catch-

ments Partnership (2005) (see Peterson et al. [2011] for

details about the stream and EHMP site data sets, as

well as the GIS preprocessing).

We used the Queensland Land-Use Mapping Program

(QLUMP) data set (BRS 2002) and the Statewide

Landcover and Trees Study (SLATS) derived 2001

Foliage Projective Cover (FPC) data set (Kuhnell et

al. 1998) to generate 10 land-use and land-cover

(LULC) rasters (Table 1), with a 25-m spatial resolu-

tion. The land-use rasters were derived from the

QLUMP data set and included urban (urban), cropping

(crop), and pasture (pasture) land uses. The SLATS

FPC data were categorized based on the specifications of

Specht et al. (1974) and used to derive rasters for four

land-cover categories: very sparse forest (VSF), sparse

forest (SF), mid-dense forest (MDF), and dense forest

(DF). Details concerning the GIS pre-processing of the

LULC data sets are also provided in Peterson et al.

(2011). Composition metrics based on lumped attributes

(e.g., areal percentages of land use within an area), were

TABLE 1. Land-use and land-cover categories used to calculate explanatory variables at the catchment, riparian, and reach scale.

Land-use code Scale Description Source

Urban catchment and riparian urbanized land use QLUMP (BRS 1999)
Cleared catchment cleared land use QLUMP (BRS 1999)
Crop catchment and riparian crop land use QLUMP (BRS 1999)
Pasture catchment and riparian pasture land use QLUMP (BRS 1999)
VSF catchment and riparian very sparse woody vegetation Kuhnell et al. (1998)
SF catchment and riparian sparse woody vegetation Kuhnell et al. (1998)
MDF catchment and riparian mid-dense woody vegetation Kuhnell et al. (1998)
DF catchment and riparian dense woody vegetation Kuhnell et al. (1998)
Crop reach crop land use DERM (2008)
Grass reach grasslands DERM (2008)
Urban reach residential or urban land use DERM (2008)
Trees reach tree cover DERM (2008)

Notes: All catchment-scale metrics included lumped, inverse flow length to the outlet (iFLO), inverse flow length to the stream
(iFLS), and hydrologically active inverse flow length to the outlet (HA-iFLO) and to the stream (HA-iFLS). Riparian and reach-
scale attributed metrics were calculated using the lumped metrics.

FIG. 2. Diagram of the calculation of the annual EHMP score calculated for each site. The average annual site score for each
reporting catchment (0–1) is then converted to a report card grade by averaging all site scores in each report card catchment with
grades boundaries as A (1.000–0.925), B (0.924–0.850), C (0.849–0.775), D (0.774–0.700), and F (,0.700); a grade of A suggests
excellent health while a grade of F is considered a fail. EPT stands for Ephemeroptera, Plecoptera, and Trichoptera. SIGNAL
scores are an index in the EHMP.
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calculated using the seven LULC data sets at the

catchment and riparian scales (Table 1).

Lumped attributes are commonly used to characterize

catchment land use in aquatic studies (Johnson et al.

1997, Peterson et al. 2006), but they are nonspatial and

do not account for either the disproportionate influence

of land located near the stream or land with high rates of

overland flow. Recent research suggests that spatially

explicit landscape-representation methods have the

ability to explain additional variability in instream

indicators of ecosystem health in SEQ (Peterson et al.

2011). Therefore, two inverse-distance-weighted (IDW)

catchment attributes, which account for the proximity of

land to the stream or stream outlet (i.e., the EHMP

survey site), were also calculated for each of the LULC

categories (Table 1): inverse-flow length to the stream

(iFLS) and inverse-flow length to the outlet (iFLO). An

IDW metric uses a distance-decay function to give a

stronger weight to land use closer to a specific feature of

interest. The general formula shown in Eq. 1 is used to

calculate the IDW metric (percentage) for each land-use

type separately:

LU ¼

Xn

i¼1

IðkÞWi

Xn

i¼1

Wi

3 100: ð1Þ

In this case Wi is the inverse-distance weighting, (d þ
1)�1, from every cell in the catchment to either the

survey site or the stream, with 0 , Wi � 1. Distance, d,

is represented using the flow length to either the outlet or

the stream, with the units determined by the projection

of the data set. I(k) is an indicator function, indicating

whether each cell represents the land use of interest, k¼
1, or another land-use type, k¼ 0. Note that Eq. 1 could

also be used to calculate the lumped metric if a uniform

weighting, Wi ¼ 1, was used.

Land use found in preferential overland-flow path-

ways may also influence the conditions found at the

survey site (Stauffer et al. 2000, Peterson et al. 2011).

Thus, two additional IDW attributes were calculated for

each of the catchment-scale LULC categories that

account for proximity to the stream or outlet and the

potential for hydrologic activity: hydrologically active

inverse-flow length to the outlet (HA-iFLO) and to the

stream (HA-iFLS). The general form of the hydrolog-

ically active inverse-distance weighted (HA-IDW) met-

ric (percentage) is

LU ¼

Xn

i¼1

IðkÞWiFAi

Xn

i¼1

WiFAi

3 100: ð2Þ

FAi is the flow accumulation value for each cell, where

FAi � 0. Assuming that all precipitation results in

overland flow, FA represents the number of upslope

cells that contribute flow into each downslope cell based

on the topography of the catchment. Additional

information about the derivation of the catchment-scale

attributes can be found in Peterson et al. (2011).

Land use and land cover at the reach scale were

characterized using orthorectified aerial photographs

with a 0.6 m spatial resolution, taken between 2001 and

2007 (DERM 2008). Land-use types, including crop,

residential/urban (urban), grass (grass), and trees (trees),

were visually identified and manually digitized. Lumped

metrics were also calculated for each of the four LULC

types at the reach scale. In total, 46 LULC explanatory

variables were calculated (Table 1). These included 35

catchment-scale variables (5 metric types 3 7 LULC

categories), seven riparian-scale LULC categories, and

four reach-scale LULC variables).

Rainfall

The seasonal expansion and contraction of the stream

network (Malard et al. 1999) may affect the relative

influence of catchment land use on in-stream indicators

(Johnson et al. 1997, Young and Collier 2009). In the

wet season, the stream network expands both longitu-

dinally and laterally, which results in a flushing effect as

the flow paths facilitate the movement of physical

material, chemicals, and nutrients to and within the

stream (Robertson et al. 1999). During dry periods,

there is less precipitation and the stream network

contracts, resulting in reduced connectivity and move-

ment of material (Malard et al. 1999). Thus, we expected

scores to be more strongly related to land use at the

catchment and riparian scales during the post-wet

season compared to the pre-wet season. However, SEQ

experienced drier and more variable rainfall patterns

from 2002 to 2008, which could mask this seasonal

variability. Therefore, variables describing variation in

rainfall across sites during the sampling period were also

calculated.

Interpolated mean daily rainfall (mm/d) data were

obtained from the Australian Bureau of Meteorology

(Jeffrey et al. 2001) and used to calculate the deviation

from standard rainfall for each EHMP site. The data

had a relatively coarse spatial resolution (5 km2), but

were available daily from January 2001 to March 2008.

The short-term mean total rainfall in the catchment for

the 90 days prior to sampling was calculated for each site

visit. The mean total rainfall between 2001 and 2008

(i.e., long-term mean) was also calculated for the 90 days

prior to the day and month of sampling for each site

visit. Then, the deviation of short-term mean rainfall

from the long-term total mean rainfall was calculated

(hereafter referred to as the rainfall deviation).

Statistical methods

We collated EHMP scores from 116 sites across 12

sampling occasions (six years) to produce our data set,

which contained a total of 1273 measurements (i.e.,

EHMP scores). Some sites could not be sampled every
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year due to lack of flowing water and so the number of

measurements at each site ranged between 4 and 12. We

transformed the seasonal scores using the logit trans-

formation, which ensured that model predictions were

restricted to the 0 to 1 range and allowed for additional

differentiation between groups when the values were

close to the bounds (Piepho 2003). The logit transfor-

mation is given by

logitðyÞ ¼ ln
y

1� y

� �
: ð3Þ

A linear-mixed modeling approach was used to account

for spatial and temporal variation in the transformed

scores. Linear-mixed models may include both random

and fixed effects, which is particularly useful for

modeling spatially distributed data, with repeated

measurements. A random intercept at each site was also

included in all models to account for site-specific spatial

variability that was not accounted for. The general form

of a linear-mixed model is given by

y ¼ Xbþ Zcþ e ð4Þ

where X is a matrix of explanatory variables for each site

and time and Z is a matrix of explanatory variables for

each site, regardless of time (Pinheiro and Bates 2008).

We used a large number of LULC variables, derived

at the three nested spatial scales (catchment, riparian,

and reach), which we expected to be collinear. As such,

it would be inappropriate to consider the full suite of

potential explanatory variables using common model-

selection strategies, such as forward, backward or

stepwise selection (Mills and Prasad 1992, Kutner et

al. 2004). The use of principal-components analysis is a

common technique for dealing with highly correlated

explanatory variables, but it was not applicable here

because we were specifically interested in the influence of

a spatial scale, rather than a linear combination of

spatial scales. Therefore, we used a Bayesian model-

averaging approach to assess the impact of land use at

different spatial scales.

First, we constructed a list of candidate models, with

the requirement that for each land-use type, only one

scale and its seasonal interaction were permitted in the

model (Table 1). For example, a model containing MDF

iFLO and DF iFLO would be permitted because MDF

and DF are different land-use types; however, a model

containing iFLO and riparian-scale MDF or iFLO and

FIG. 3. Graphical representation of the spatial scales of influence. (a) The lumped attributes are nonspatial and include
‘‘lumped catchment’’ representing the entire drainage area upstream from each EHMP survey site, ‘‘lumped riparian’’ representing
those catchment areas that are within 25 m of the stream, and ‘‘lumped reach’’ restricted to those areas within 25 m of the stream,
which are within 1 km upstream from the EHMP survey site. (b) The inverse-distance-weighted (IDW) catchment attributes
account for the proximity of land-use and include inverse-flow length to the stream (iFLS) and inverse-flow length to the outlet or
site (iFLO). (c) The hydrologically active inverse-distance-weighted (HA-IDW) catchment attributes account for both the
proximity of land use and the potential for hydrologic activity; they include hydrologically active inverse-flow length to the stream
(HA-iFLS) and to the outlet, or site (HA-iFLO). The figure is modified from Peterson et al. (2011).
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MDF HA-iFLO would not be permitted since MDF

would be represented using two different scales or metric

types. Temporal explanatory variables characterizing

season (1 ¼ post-wet and 0 ¼ pre-wet) and rainfall

deviation were also included in all models.

Every linear combination of potential explanatory

variables produced 629 407 744 candidate models and

so an exhaustive model search was impossible. In

addition, we expected LULC explanatory variables

calculated at nested spatial scales or using different

metrics to be correlated. Therefore, we employed a

stochastic-model search to efficiently identify the most

influential explanatory variables, as well as ensure that

collinear LULC explanatory variables were not includ-

ed within the same model. The stochastic model search

consisted of 10 chains of 10 000 steps to produce a

total of 100 000 models and was conducted as

described in Appendix A.

The posterior probability (P(Mi jD ) for each of the

models given the data set D (Hoeting et al. 1999) was

then calculated using the 100 000 models:

PðMi jDÞ ¼
PðD jMiÞPðMiÞ

Xm

j¼1

PðD jMjÞPðMjÞ
’

exp �1

2
BICi

� �

Xm

j¼1

exp �1

2
BICj

� � ;

ð5Þ

where Mi is the model of interest, Mj (Mj¼ 1, . . . , m) are

the 99 999 alternative models, and BICi and BICj are the

Bayesian information criterion (BIC) values for models

Mi and Mj, respectively. The posterior model probabil-

ities were then used to derive the model-averaged

distribution for the coefficients, b:

pðb jDÞ ¼
Xm

j¼1

pðb jMj;DÞPðMj jDÞ: ð6Þ

Models with a posterior probability of 0.0001 or higher

were used to calculate the model-averaged means,

standard errors, and inclusion probabilities.

The statistical methods described in Appendix A

were also applied to a subset of the annual scores data

set, with linear-mixed models fit to each of the five

seasonal-indicator scores: fish, macroinvertebrates, eco-

system processes, nutrients, and water quality. There

were no missing values in the subset of indicator data,

which included 349 pre-wet and 336 post-wet season

observations, collected at 110 EHMP sites. A logit

transformation was applied to each of the indicator

scores prior to analysis. All of the statistical analyses

for the scores and indicators were undertaken in R

statistical software (R Development Core Team 2006)

using the lme4 package or custom R scripts (package

available online).6

Restoration scenarios

We selected three catchments with different back-

ground river ecosystem health to assess the influence

that increasing tree cover in the upstream catchment

would have on the seasonal report card grade. The
catchment with good ecosystem health was the Moo-

loolah River Catchment in the north of the SEQ Region,

covering an area of 223 km2 with a stream network
length of 322 km. There are five EHMP sites within the

Mooloolah catchment with report card grades ranging

from a C in 2003, a B in 2004–2008 and an A� in 2004.

The catchment with fair ecosystem health was the
Caboolture River Catchment, north of Brisbane, cover-

ing an area of 468 km2 with a stream-network length of

795 km. Five sites are sampled in the Caboolture
catchment with report card grades ranging from Cþ in

2007 and 2008 to Bþ in 2003. In comparison, a

catchment that has remained in comparatively poor

health from 2002 to 2008 is the highly urbanized
Redlands catchment in the Moreton Bay region. The

Redlands catchment has a total area of 281 km2 with a

stream-network length of 525 km. Seven sites have been
sampled in the Redlands catchment and streams have

remained in very poor condition throughout the

sampling period, with the highest grade of C� in 2003

and a consistent grade of F since 2005.
We used the MDF HA-iFLS metric to explore the

influence of restoration on the EHMP score as it had the

highest inclusion probability of all the land-use types,

scales, and metrics. A subset of data was created for
each of the 17 sites in the Mooloolah, Calboolture, and

Redlands catchments. The 17 data sets included the last

seasonal score, as well as the explanatory variables
associated with that score, with the exception of MDF

HA-iFLS. Each of the 17 data sets was expanded to

create 101 new data sets with MDF HA-iFLS values

ranging between 0 and 100. Hereafter, we will refer to
these 101 data sets as the scenarios data set for each site.

All models with a posterior-inclusion probability greater

than 0.0001 were used to predict the seasonal score, ŷnew.
Then, the model-averaged seasonal score at a site was

calculated:

E½ŷnew jD� ¼
Xm

i¼1

Eðŷnew jMi;DÞPðMi jDÞ ð7Þ

where E½ŷnew jD� is the expected value of ŷnew. The

predicted scores for each site within a catchment were

also averaged to produce a catchment-wide seasonal
score.

RESULTS

EHMP score

There was some seasonal variation in EHMP score,
with scores tending to be lower in the pre-wet (range

0.46–0.99) compared with the post-wet season (range

0.50–0.99; Table 2). The median annual EHMP score

(for years 2002–2008) for sites obtaining a grade of A6 http://cran.r-project.org/web/packages/lme4/index.html
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(Fig. 2; Bunn et al. 2010, Healthy Waterways Partner-

ship 2012) was 0.955. At these sites, the average (6SE)

DF at the catchment and riparian scales was 26% 6

6.2%, and 27% 6 6.6%, respectively, while the average

percent tree cover at the reach scale was 86% 6 5%;

whereas the same sites had only 5% 6 2% urban land

use at the catchment and riparian scales (Fig. 4). In

contrast, the median annual EHMP score (years 2002–

2008) for those sites obtaining a grade of F was 0.655

with an average of 0.5% 6 0.3% DF at the catchment

scale, 1% 6 0.5% DF at the riparian scale and 61% 6

6% tree cover at the reach scale. In addition, all of these

sites had more than 30% 6 6.5% urban at both the

catchment and riparian scales (Fig. 4).

TABLE 2. Ecosystem Health Monitoring Program (EHMP) scores and individual component
indicator scores, by season, for years 2002–2008.

Component indicator scores

Year Score
Water
quality Macroinvertebrates Fish Metabolism Nutrients

Pre-west season

2002 0.76 (0.13) 0.77 (0.18) 0.81 (0.13) 0.56 (0.24) 0.77 (0.21) 0.80 (0.36)
2003 0.77 (0.11) 0.75 (0.19) 0.73 (0.24) 0.72 (0.23) 0.75 (0.20) 0.86 (0.27)
2004 0.78 (0.13) 0.79 (0.17) 0.85 (0.15) 0.76 (0.21) 0.79 (0.19) 0.68 (0.38)
2005 0.75 (0.13) 0.85 (0.12) 0.82 (0.19) 0.74 (0.18) 0.84 (0.16) 0.66 (0.39)
2006 0.77 (0.14) 0.81 (0.17) 0.75 (0.22) 0.69 (0.21) 0.87 (0.13) 0.78 (0.35)
2007 0.73 (0.15) 0.84 (0.14) 0.71 (0.20) 0.66 (0.24) 0.82 (0.17) 0.72 (0.36)

Post-wet season

2003 0.80 (0.14) 0.90 (0.14) 0.78 (0.19) 0.63 (0.23) 0.85 (0.17) 0.79 (0.32)
2004 0.83 (0.13) 0.91 (0.12) 0.84 (0.16) 0.74 (0.20) 0.84 (0.15) 0.76 (0.35)
2005 0.79 (0.14) 0.87 (0.17) 0.81 (0.18) 0.70 (0.22) 0.85 (0.17) 0.78 (0.36)
2006 0.80 (0.13) 0.91 (0.11) 0.80 (0.19) 0.76 (0.21) 0.87 (0.13) 0.79 (0.32)
2007 0.74 (0.14) 0.85 (0.13) 0.72 (0.23) 0.70 (0.21) 0.84 (0.17) 0.76 (0.36)
2008 0.80 (0.12) 0.92 (0.10) 0.82 (0.17) 0.68 (0.23) 0.84 (0.16) 0.70 (0.36)

Notes: Values are means with SD in parentheses. The indicator scores were derived using a
subset of the data used to calculate the score.

FIG. 4. Box plots showing the distribution of median annual report card grades across three lumped (or nonspatial) measures of
(a) dense forest and tree cover (DF) and (b) urban land use at the catchment, riparian, and reach scale. The boundary of the box
represents the 25th and 75th percentiles, the line within the box marks the median, error bars above and below the box indicate the
90th and 10th percentiles, and closed circles represent outlying points.
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Influence of land use on seasonal EHMP score

The stochastic-model search for the EHMP score

model yielded 1126 models with a posterior-model

probability greater than 0.0001, 135 models with a

probability larger than 0.001, and 19 models with a

probability larger than 0.01. The top five models

comprised approximately 43% of the total model

probability and had similar BIC values, which suggests

that all were competitive models. A visual examination

of the standardized residual plots and Q-Q plots

indicated that the residuals from the averaged model

met the assumptions of normality and homoscedasticity.

Furthermore, no residual outliers were observed or

removed.

The influence of land use on the EHMP score was

determined by exploring the probability of each land-use

variable occurring in any model (Table 3 and Appendix

B). The model coefficients indicated that rainfall

deviation had a positive influence on the score

(0.0625), meaning that sites that experienced above-

average rainfall compared to the long-term average in

the 90 days prior to sampling had higher EHMP scores

than those receiving less-than-average rainfall during the

same period. Season had a negative influence (�0.0413)
with scores lower in the pre-wet compared with the post-

wet. Both rainfall and season had a probability of 1 (i.e.,

100%) of inclusion in any model. At the catchment scale

a number of land-use variables also had a consistently

high inclusion probability including DF (99%), MDF

(99%), and urban (99%; Table 3 and Fig. 5a). The

relationship of these land-use variables to the EHMP

score was as expected with both DF and MDF having a

positive relationship and urban having a negative

relationship (Table 4). DF close to the survey site

(iFLO) had a much higher inclusion probability

compared to other measures of DF (63%) and also

had the strongest positive relationship (Table 4); though

lumped DF at the catchment scale also had a relatively

high probability compared to other DF measures (32%).

The potential for hydrologic activity also seemed to

affect the inclusion probabilities. For metrics of MDF,

HA-iFLS had a positive influence on the score (Table 4)

and the highest probability of being included in any

model (92%) with no other MDF metrics with an

inclusion probability greater than 5% (Table 3).

Although a number of other catchment-scale land-use

measures had a negative influence on the EHMP score,

including urban, SF, VSF, and crop, this influence was

not as strong as the positive influence of the presence of

DF and MDF (Table 4). Interestingly, three urban land-

use measures had a nearly equal probability of inclusion:

iFLS, HA-iFLS, and riparian (22%, 27%, and 23%,

respectively). Despite their negative influence on the

score, SF, VSF, crop, and pasture had a low inclusion

probability compared to the other land-use variables,

with none greater than 20% (Table 3).

When seasonal interactions with LULC metrics were

tested only the seasonal MDF interaction had a strong

probability of inclusion in any model (93%); however,

the seasonal interaction for DF also had a relatively

strong inclusion probability (35%) compared to the

other land use3 seasonal effects, which all had inclusion

probabilities less than 2%. Of the MDF metrics, HA-

iFLS 3 season was primarily driving this relationship,

and having a positive influence on the score (Table 4).

Land-use variables at the riparian and reach scale

generally had less influence on the score and a lower

probability of being included in any model, compared

with catchment-scale variables (Table 3 and Appendix

B). Riparian-scale urban and reach-scale grass had

TABLE 3. Summary of the overall EHMP score model inclusion probabilities for each land use explanatory variable calculated at
the catchment, riparian, and reach scales.

Scale DF MDF SF VSF Pasture Crop Urban Tree Grass

Main effect 0.9990 0.9863 0.1975 0.1051 0.0844 0.0756 0.9873 0.1946 0.1946
Main effect 3 season 0.3496 0.9347 0.0066 0.0212 0.0026 0.0019 0.0135 0.0021 0.0021
Catchment scale
Lumped 0.3186 0.0007 0.0740 0.0191 0.0093 0.0110 0.1569
iFLO 0.6267 0.0006 0.0173 0.0120 0.0154 0.0092 0.1099
iFLS 0.0265 0.0176 0.0334 0.0174 0.0117 0.0097 0.2186
HA-iFLO 0 0.0005 0.0111 0.0103 0.0228 0.0111 0.0004
HA-iFLS 0.0027 0.9157 0.0319 0.0298 0.0135 0.0113 0.2699
Lumped 3 season 0.0246 0 0.0023 0.0083 0.0005 0.0003 0.0022
iFLO 3 season 0.2072 0 0.0005 0.0016 0.0004 0.0003 0.0015
iFLS 3 season 0.1109 0.0088 0.0012 0.0059 0.0004 0.0003 0.0028
HA-iFLO 3 season 0.0063 0 0.0004 0.0004 0.0005 0 0
HA-iFLS 3 season 0 0.8930 0.0009 0.0008 0.0003 0.0004 0.0037

Riparian scale

Lumped 0.0246 0.0512 0.0298 0.0166 0.0116 0.0100 0.2299
Lumped 3 season 0.0006 0.0329 0.0012 0.0042 0.0004 0.0003 0.0032

Reach scale

Lumped 0.0133 0.0018 0.1946 0.1946
Lumped 3 season 0.0004 0.0001 0.0021 0.0021
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relatively high probabilities of being in any one model

compared to the other reach and riparian metrics (23%

and 19%, respectively) and both had a negative

relationship with the score (Table 4). Tree at the reach

scale also had an inclusion probability of 19.5% and a

positive relationship with the EHMP Score (Table 4),

while none of the other riparian or reach-scale variables

had inclusion probabilities greater than 5.2% (Table 3).

Land-use influences on individual indicators

Summary statistics for the seasonal indicator scores

showed similar patterns to the annual score, with scores

tending to be higher in the post-wet season (Table 2 and

Appendix B). Seasonal fish indicator scores were

generally lower than the other indicators, while ecosys-

tem processes indicator scores were high in both seasons

(Table 2). Water quality indicator scores tended to be

FIG. 5. Total inclusion probability for each land-use type by catchment-, riparian-, and reach-scale metrics. Plots are (a) EHMP
score and (b–f ) individual ecosystem health indicators: (b) water quality indicator, (c) macroinvertebrate indicator, (d) fish
indicator, (e) ecosystem processes indicator, and (f ) nutrient indicator. Land-use codes are explained in Table 1.

December 2012 2197LAND-USE INFLUENCES ON RIVER HEALTH



higher in the post-wet compared with the pre-wet season

across all years, while the mean seasonal scores for the

other indicators did not show a consistent seasonal

effect; however the lowest scores recorded for all

indicators occurred in the pre-wet season (Table 2).

Season and rainfall deviation had a 100% inclusion

probability across all models, for all five ecosystem

health indicators. DF also had a high probability of

being in any one model, with the exception of the

nutrient indicator (Fig. 5). For the water quality

indicator the MDF HA-iFLO metric had the highest

probability of being in any one model (63%; Fig. 5b)

with the largest seasonal land-use interaction being

season 3 SF iFLS (Appendix B).

For the macroinvertebrate indicator, forested metrics

had the highest inclusion probabilities, and these

included riparian DF (57%), MDF HA-iFLO (39%),

DF iFLS (38%), and tree (37%), all having a positive

relationship (Fig. 5c and Appendix B). Lumped urban

had an inclusion probability of 42%, but had a negative

influence on the macroinvertebrate indicator score (Fig.

5 and Appendix B), while all other land-use metrics had

inclusion probabilities less than 18%.

In contrast, one reach-scale land-use measure was

most important for the fish indicator; reach-scale grass

had a 74% inclusion probability and a negative

relationship (Fig. 5d and Appendix B). Three catchment

measures had inclusion probabilities greater than 24%;

DF HA-iFLO and iFLO had a positive relationship with

the fish indicator score, while urban close to the stream

(riparian and HA-iFLS) had a negative influence (Fig.

5d and Appendix B). In addition, there was no evidence

of seasonal interactions with any of the measured land-

use metrics for the fish indicator (Appendix B).

Land use at the catchment, riparian, or reach scale

had little effect on the ecosystem processes indicator

(Fig. 5e and Appendix B). At the catchment scale, the

DF iFLO metric had the highest inclusion probability

(13%) and a positive relationship, however, none of the

riparian or reach-scale land-use variables had more than

a 10% inclusion probability (Appendix B). There was

also no evidence of a significant seasonal interaction

with any of the land-use variables for the ecosystem

processes indicator (Appendix B). For the nutrient

indicator, lumped urban had a negative influence on

the indicator and had the highest probability of being in

any one model (93%), which was much larger than all of

the other potential land-use metrics (Fig. 5f and

Appendix B). Although the inclusion probability for

catchment-scale lumped urban 3 season was relatively

small (7.24%), it had a positive coefficient, suggesting

that urban areas have a slightly stronger influence on the

nutrient indicator scores in the post-wet season com-

pared to the pre-wet season (Appendix B).

Modeling the influence of restoration

EHMP sites in the Mooloolah catchment (good to

excellent health) currently have an average of about 65%
MDF cover and the seasonal score model results suggest

that MDF HA-iFLS must be increased to 80% to

consistently achieve a report card grade of Bþ to A

(excellent health) (Fig. 6a). For the Caboolture Catch-

ment, which consistently receives moderate ecosystem-

health grades, model results also suggest that MDF HA-

iFLS needs to be increased from the current average of

approximately 50% to 80% to achieve a report card

grade of Bþ to A (excellent health) (Fig. 6b). A more

extreme land-use change would be necessary in the

Redlands catchment (poor health), where model results

suggest that an MDF HA-FLS value of 100% must be

achieved to obtain an EHMP report card grade of B.

However, increasing the cover of MDF HA-iFLS to

60% could have a positive outcome by consistently

returning a report card grade of C (Fig. 6c).

TABLE 4. Model-averaged coefficients for each land-use variable and seasonal interaction included in the overall EHMP score
model.

Scale DF MDF SF VSF Pasture Crop Urban Tree Grass

Catchment scale

Lumped 0.0078 �0.0027 �0.0008 0 �0.0001 �0.0015
iFLO 0.0232 0 �0.0002 �0.0003 0 0 �0.001
iFLS 0.0007 0.0001 �0.0008 �0.0011 0 0 �0.0022
HA-iFLO 0 0 0 0 0 0 0
HA-iFLS 0.0001 0.0047 �0.0004 �0.0022 0 0 �0.0027
Lumped 3 season 0.0018 0 0 �0.0037 0 0 0
iFLO 3 season 0.0009 0 0 �0.0002 0 0 0
iFLS 3 season 0 0.0001 0 �0.0018 0 0 0
HA-iFLO 3 season 0 0 0 0 0 0
HA-iFLS 3 season 0 0.0053 0 0 0 0 0

Riparian scale

Lumped 0.0006 0.0004 �0.0006 �0.0013 0 0 �0.0022
Lumped 3 season 0 0.0002 0 �0.001 0 0 0

Reach scale

Lumped �0.0002 �0.0002 0.0045 �0.0016
Lumped 3 season 0 0 0 0

Note: The coefficients for the intercept, rainfall, and season were 0.6646, 0.0625, and�0.0413, respectively.
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DISCUSSION

Land use and stream ecosystem health

The 14 EHMP indices were originally chosen to

document the ecosystem health of SEQ rivers and

streams because they responded to a disturbance

gradient of land-use change, channel condition and

water quality (Bunn et al. 2010). This relationship was

also evident in the association between the aggregated

EHMP score and catchment land use. In general,

catchments obtaining a report card grade of F had

lower lumped percentages of dense forest and higher

percentages of urbanization at the catchment and

riparian scales, while the opposite was true in catch-

ments consistently obtaining report card grades of B or

higher. However, our goal was not to identify a

relationship between land use and ecosystem health,

which in itself is well-established (Allan 2004, Wasson et

al. 2010). Instead, it was to identify the spatial scale of

land use, or the combination of spatial scales, that most

strongly influences the overall ecosystem health score. In

addition, we wanted to determine whether the most

influential scale differed for different aspects of ecosys-

tem health (Fig. 2). Given that restoring ecosystem

health is the focus of many stream restoration projects

(Bernhardt and Palmer 2007, Lake et al. 2007), our

approach can be used to identify the scale and

catchment position of restoration that would likely

result in the greatest improvement of ecosystem health in

regional streams and rivers.

Land use, climate, and the EHMP score model

Spatially explicit representations of land use at the

catchment scale have previously been shown to explain

more variation in median ecosystem health indices

compared with lumped catchment metrics (Peterson et

al. 2011) and the same held true for the aggregated

EHMP score (Fig. 5). This suggests that all forested

areas throughout the catchment have the potential to

positively influence the EHMP score, but that MDF in

areas of close proximity to the stream or survey site, and

in areas with a high probability of contributing overland

flow, have the strongest positive influence.

The fact that three urban land-use measures had

nearly equal inclusion probabilities likely results from

the relatively coarse spatial resolution of the land-use

data and the way that HA-iFLS and iFLS metrics

allocate the largest weighting to those areas directly

adjacent to the stream. The urban HA-iFLS metric had

a slightly higher inclusion probability than the other two

metrics suggesting that urbanized near-stream areas with

the potential for overland flow may more negatively

impact the EHMP score. However, lateral connectivity

in an urban area is expected to be strongly influenced by

non-natural mechanisms including storm-water drain-

age pipes and connection via impervious surfaces such

as roadways and paths (Walsh and Kunapo 2009). As

such, stream proximity in urbanized catchments is

altered and we would expect urban areas that are

directly connected to the stream via storm water piping

to have an equally strong negative influence on

ecosystem health.

We focused on understanding how the spatial scale of

land-use influences ecosystem health and found that this

scale could change depending on temporal factors such

as season and antecedent rainfall. In our models,

explanatory variables representing season and anteced-

ent rainfall had an inclusion probability of 1, which is

not surprising given that flow and connectivity between

sites are expected to favor all the component indicators

within the EHMP score (Poff et al. 1997). Admittedly,

our data set covers an extreme period of drought in SEQ

FIG. 6. Predicted change in seasonal score for (a) the Mooloolah River, (b) the Caboolture, and (c) the Redlands report card
regions, with increasing hydrologically active inverse distance-weighted mid-dense forest (MDF HA-iFLS) in the catchment.
Changes are provided for each site within the catchment (various dotted lines) and the overall average EHMP report card grade
(solid line).
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and consequently there are no significant periods of

sustained above-average flow, which could also have a

negative influence on ecosystem health through the

component indicators (Pires et al. 2008).

Mean pre-wet scores were consistently lower than

post-wet scores (Table 2), highlighting the importance of

seasonal variability on ecosystem health. In SEQ the

pre-wet season occurs in spring, which is often a time of

low rainfall and streamflow, with high air and water

temperatures. The model coefficient for season was

negative, indicating that post-wet season scores were

lower than the pre-wet season. At first, these results

seemed counterintuitive, but the negative influence of

the seasonal effect appears to be negated by the strong

positive influence of the seasonal MDF interaction on

the EHMP score. When MDF values were low

(,7.79%), MDF had a negative relationship with the

score and this effect was stronger in the post-wet season

(Appendix B). This suggests that catchments with little

forest cover were more likely to have low EHMP scores

in the post-wet season due to runoff from sparsely

vegetated areas. However, there was also a strong

seasonal interaction with MDF HA-iFLS; as the

amount of MDF increased past 7.79%, the expected

positive post-wet seasonal effect was captured through

the seasonal interaction term with MDF (Appendix B).

This indicates that the positive influence of MDF was

strongest in the post-wet season when there was a higher

likelihood of catchment runoff.

Land-use influence on component indicators

By exploring the influence of land-use scale on the

aggregated EHMP score, we may miss some of the

complexities of differential effects within the component

indicators. Peterson et al. (2011) found that different

landscape-representation metrics explained the most

variation in EHMP fish, macroinvertebrate, and water

quality indices (Fig. 2). This is not surprising since the 14

ecosystem health indices were initially selected because

they responded to a disturbance gradient that included

land-use change and channel condition (Bunn et al.

2010). Our analyses also suggest that the five aggregated

indicators of ecosystem health displayed differential

relationships with land use across various spatial scales,

with no single land-use scale consistently explaining

variation in all indicators.

Forested areas at multiple spatial scales tended to

have a strong influence on the water quality indicator

suggesting that forested areas anywhere in the catch-

ment can have a positive influence on water quality, but

that those areas that are in close proximity to the stream

or survey site have the strongest influence. This reach

and riparian-scale effect of land use is likely influencing

the 24-h measures of dissolved oxygen (DO) and

temperature range, which are known to respond

strongly to local riparian cover (Rutherford et al.

2004, Fellows et al. 2006), whereas the measures of

conductivity and pH are likely reflecting catchment-wide

land use (Peterson et al. 2011).

The macroinvertebrate indicator was also strongly

related to land use at multiple scales. Forested areas

near the stream or site tended to have a strong positive

influence, while urban areas had an equally negative

influence on the indicator, regardless of proximity to the

stream or survey site. The positive influence of forests

reflect the overriding influence of riparian vegetation on

stream macroinvertebrates (Baxter et al. 2005), where a

large proportion of insect larvae and nymphs mature

into terrestrial adults, which require riparian vegetation

for survival (Smith et al. 2009). This is especially true of

the insect orders Ephemeroptera (mayflies), Plecoptera

(stoneflies), and Trichoptera (caddisflies) that make up

the EPT richness index (Sponseller et al. 2001). The

negative influence of urban areas did not appear to be

related to the spatial proximity of land use in the

catchment and this may reflect the complexities of the

urban land-use signal. Urban areas anywhere within a

catchment can be connected to the stream network

through storm water pipes and other artificial drainage

mechanisms (Walsh and Kunapo 2009), which may

influence macroinvertebrates through changes in water

quality, reduced habitat availability or directly through

increased flow velocity (Walsh et al. 2007).

The fish indicator also tended to be more strongly

related to land use near the stream or survey site. These

results are not surprising since the fish indices that

comprise the fish indicator responded most strongly to

local-channel condition and in-stream habitat in the

original EHMP design study (Kennard et al. 2006, Bunn

et al. 2010). This also makes sense from a mechanistic

standpoint; there is likely to be poor in-stream channel

habitat where the surrounding land is dominated by

grass or in highly urbanized areas, which is likely due to

a lack of in-stream wood, known to have a positive

influence on the EHMP fish indices (Kennard et al.

2006).

Indices within the ecosystem process indicator have

been shown to respond to local site measures of canopy

cover and nutrients (Fellows et al. 2006), and this site

effect may not have been captured in this study, given

that our finest land-use scale was the 1-km upstream

reach. To capture these site-scale influences on ecosys-

tem processes, a land-use metric based on the inverse

flow length to the outlet and generated using fine-scale

land-use data would need to be tested. Although the

relationship was not strong, the nutrient indicator was

most influenced by the percentage of urbanization in the

catchment, suggesting that urbanization anywhere

within the catchment has a negative impact on nutrient

processing. In addition, our results show that this

negative influence may be slightly stronger in the post-

wet season, perhaps reflecting the impact of increased

runoff from impervious surfaces in urban areas (Walsh

and Kunapo 2009).
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Restoration scenarios

One common option for restoring the integrity of
streams and rivers is the reinstatement of riparian

vegetation, particularly in systems where land-use
change is the primary driver for reductions in stream

ecosystem health (Lake et al. 2007, Palmer et al. 2009).
Much of this restoration, however, is undertaken

without an understanding of the scale required for
measurable positive outcomes; as such, there is a risk

that the scale of the restoration will be insufficient to
detect an ecosystem response. The methods used to

generate the restoration scenarios presented here may be
used to identify the quantity and spatial location of

restoration activities; thus, providing critical informa-
tion needed to guide investments in stream and

catchment restoration. We focused on the MDF HA-
iFLS metric because it had the strongest relationship to

ecosystem health in the EHMP score models. The
scenario results suggested that only a minor increase in
the EHMP score could be gained for a relatively large

restoration effort in catchments that were already in
good to fair ecosystem health. In the Redlands

catchment, however, the scenarios suggested that
catchment ecosystem health could increase from a fail

(F grade) to moderate (C grade) by restoring a relatively
large portion of hydrologically active near-stream areas,

which given the highly urbanized nature of the
catchment, may be acceptable.

These restoration models, while as yet untested in the
field, provide some guidance to the level of restoration

required for positive ecosystem health outcomes and
could therefore provide the predictive framework for

testing the scale of appropriate restoration for the rivers
and streams in SEQ. However, we recognize that the

scale we have identified may not be true for every
catchment or site and may not be transferable between

catchments, and any restoration activities guided by this
analysis would need to be appropriately monitored as a

test of the effectiveness of this scale of intervention
(Palmer et al. 2009). The EHMP score is an aggregate of
five indicators and only three of those (water quality,

macroinvertebrates, and fish) demonstrated a strong
statistical relationship with forested land use. In

addition, the most influential spatial scale of forested
area tended to be areas close to the stream or the site,

depending on the indicator. When an indicator is
strongly influenced by near-site land use (e.g., iFLO,

HA-iFLO, or the reach), the implication is that
restoration of the local riparian area will only have a

positive influence a short way downstream. However, if
a site is strongly influenced by near-stream land use

(iFLS, HA-iFLS, or riparian), then the influence of
restoration will have a strong influence further down-

stream. From a restoration perspective, more of the
riparian zone would need to be restored to improve
catchment-wide ecosystem health when near-site land

use is important. Restoration efforts geared toward
improving these three EHMP ecosystem health indica-

tors should therefore be targeted in the HA-iFLS zone

because the goal is to improve the ecosystem health

throughout SEQ streams, rather than at individual sites.

Our study does not provide evidence that increasing the

amount of forest cover in this zone will have the same

effect on the ecosystem processes and nutrient indica-

tors. However, previous research undertaken in SEQ

suggests that improving water quality and increasing

riparian canopy cover would also positively influence the

individual ecosystem processes and nutrient indices

(Fellows et al. 2006, Udy et al. 2006).

CONCLUSIONS

As with similar monitoring programs worldwide

(Williams et al. 2009) the management response to

declining ecosystem health usually lies in stream and

catchment restoration (Bernhardt and Palmer 2007,

Lake et al. 2007), but the missing piece in the restoration

puzzle is how much restoration is needed and where it

should be targeted to obtain positive ecosystem health

outcomes. There is generally a lack of data targeting

stream restoration projects (Bash and Ryan 2002,

Bernhardt et al. 2005). However, we have assessed

restoration potential using an adaptive-management

approach, with the results used to identify which spatial

scale of land use most strongly influences ecosystem

health. Our models suggest that at least 80% mid-dense

forest cover is required in hydrologically active near-

stream areas to obtain excellent ecosystem health, but

restoration at other spatial scales may also be required

(Li et al. 2001). Increasing forest cover in the hydrolog-

ically active region of the stream would influence water

quality by mediating the 24-h temperature and dissolved

oxygen range. It would also provide habitat for

macroinvertebrates, promote bank stability and habitat

for fish, and would positively influence site-scale

ecosystem processes.

Most studies that explore the relationship between

land use and stream ecosystem health focus on the

response of a single index or a group of related indices.

We demonstrate a significant influence of land use on

ecosystem health, even after the indices were standard-

ized against reference conditions and averaged to

produce an overall EHMP score (Fig. 2). Our results

suggest that when a monitoring program is appropri-

ately designed to detect disturbance associated with

broad-scale land-management practices (Bunn et al.

2010), then these influences may also be detected in a

single aggregated score. This indicates that an ecosystem

health report card grade, such as that used by the

EHMP, is a powerful management tool. It maintains the

integrity of an ecologically diverse set of monitoring

results, while also being easy to understand and

communicated to non-scientific audiences, who may be

responsible for decisions about restoration funding. The

monitoring and assessment framework demonstrated

here provides critical information for guiding invest-

ments in stream and catchment restoration at a scale
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that will have positive outcomes for river ecosystems

and their catchments.
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SUPPLEMENTAL MATERIAL

Appendix A

Bayesian model-averaging approach and stochastic model search (Ecological Archives A022-118-A1).

Appendix B

Seasonal score model-averaged coefficients, standard errors, and inclusion probabilities (Ecological Archives A022-118-A2).
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