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Abstract
Data collection for freshwate regions of The Ecosystem Health Monitoring Program
(EHMP), in southeast Queensland, Australia, involves the sampling of over 130 sites
among 19 catchments twice per year and has been ongoing for over ten years. The
sampling design was derived following an exhaustive process of indicator and site
selection to develop a composite indicator that represented aquatic ecosystem health.
After 13 years of implementation, there was an interest in identifying redundancies in
sampling to reduce sampling costs withoutmaking a substantial impact on the integrity
of the program and its capacity to report on ecosystem health. This paper focuses on
identifying a subset of sites and times that could be removed from sampling with a
minimal impact on the subsequent ecosystem health scores. Herein, Mixed models
are employed to assess a variance structure from which optimality criteria are utilized
to identify the scheme. Integer programs are then used to ensure specific practical
constraints are observed.
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1 Introduction

Comprehensive sampling is essential in monitoring the health of an ecosystem. How-
ever, the frequency, duration, and breadth of the data collected can be problematic
in the practical sense of financial resources required and the physical difficulties of
accessing remote sites. This paper considers the scenario of a large-scale monitoring
program with a sampling scheme already in place where data are collected multiple
times per year over a large number of locations within distinct regions or strata. With
too few sample sites, the data are not representative of the ecosystem. That solution
is straightforward: increase the number of geographic sites from which to sample.
This of course, requires additional expense, both literal and figurative, so the question
becomes, given an existing large-scale monitoring program, is there now redundancy
in that program? And is there a way to refine and optimize the sampling scheme to
reduce that redundancy? Addressed herein is exactly that: for a large-scale monitoring
program, we develop a method to identify and remove redundancy in sampling while
still retaining a maximal amount of information from the optimized sampling scheme.
Our proposed method synthesizes concepts from Operations Research, Experimental
Design, and Linear Mixed Models to reduce a large number of collection sites to a
smaller representative subset.

The use ofmixedmodels accompanied by design of experiments’ (DOE) optimality
measures have been used for site selection has been employed before. For example,
in an agricultural setting Sebolai et al. (2005) proposes an A-optimality criterion
based on mixed models’ covariance matrices. Here, however, the data are simulated
and represent a pre-specified fixed grid plot of an agricultural tract. Further, the A-
optimality component assesses a pre-specified pattern of collections sites within the
grid. While this is common in agricultural studies, it is not readily applicable in the
present setting due to a physical geography that constrains the possibility of afixedgrid,
and further restricts selection to a pre-specified pattern. In another agricultural study,
Clarke and Stefanova (2011) relax the fixed grid constraint and also considers DOE
optimality measures for sites, however the method proposed there does not employ
mixed models. A comprehensive treatment of mixed models and DOE optimality
measures is found in Schmelter (2007), however the application closest to ecological
studies is again an agricultural setting. While the use of optimality measures of mixed
models used in DOE is well-documented, these methods lack the additional step
presented in our proposed method which is the use of linear integer programming
to complete the site selection. Further, the application of these methods is typically
restricted to agricultural studies and does not directly translate to ecological studies
where the natural geography can present difficulties using a fixed-grid layout.

A novel component of our proposed method is linking a linear integer program (LP
or LIP) to optimalitymeasures on resulting covariancematrices frommixedmodels on
data from a set of sites. The use of LIP’s in site selection is also not new in the literature
and specifically not new in the ecological literature. Beyer and Watts (2016) employ
LIPs for site selection and do so in a setting similar to the setting that motivates our
proposed method. Specifically, their method considers constraints imposed both by
geography and budgetary concerns. The LIP there is the primary selection method and
as such is farmore complex than the onewe employ here. Our use ofmixedmodels and
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optimality lessens the dependence on a complex linear program where we constrain
only the total number of sites selected and that at least one site is selected within each
predefined region. Moilanen (2008) also employs linear programs as a comparison to
so-called “heuristic” methods. Using the terminology of this application, our approach
is a hybrid of LPs and heuristic approaches by again combining the LP as a final step
in site selection using mixed models and optimality measures. Methods similar to
Moilanen (2008) are found in Vanderkam et al. (2007), Csuti et al. (1997), and Pressey
et al. (1996), but again focus on the LP approach.

What is evident in the literature is that there are approaches usingmixedmodelswith
or without a DOE optimality measure. However, these methods do not always directly
apply to non-agricultural geographies. It is also evident that there is a fair amount of
literature employingLPs for site selection for regions like the ecosystemmotivating our
development but rather compare these methods against a heuristic model, rather than
combining both approaches as we do here. Therefore we differentiate our proposed
approach to others that have been used for similar problems by implementing a three-
step procedure of a mixed model, a DOE optimality measure, and an LIP selection
algorithm.

This paper is organized in the following manner. Section 2 details the proposed
method beginning with the available data then culminating in the synthesis of mixed
models, A- or D-optimality, and integer programming. In Sect. 3, results are presented
on data from freshwater sites sampled in the Ecosystem Health Monitoring Program
(Bunn et al. 2010), illustratingmodel performance. In the penultimate section (Sect. 4)
a simulation study is presented to illustrate the performance of the method described
herein. The paper concludes with Sect. 5, which summarises key findings, addresses
considerations for further implementation, and offers exciting potential for future and
continued work.

2 Methods

The overarching goal is to develop a method to reduce redundancy in a sampling site
scheme. Specifically, for a large number of sites, stratified across multiple regions,
with data collected annually or intra-annually, we propose a method to decrease the
number of sites sampled and the frequency at which they are sampled, while still
retaining a maximal amount of information. Further, to ensure the sampled data is
representative of the entire survey area, we can employ constraints such that each
region of stratification is included. The method comprises multiple steps. First, of the
variables/indices collected at each site a subset of these is selected through standard lin-
ear regression methods. Next, with the reduced set of explanatory variables, a linear
mixed effect model is estimated to obtain the model variance matrix. Then, draw-
ing from the design of experiments literature, the covariates and the variance matrix
can be used to select the sites which maximize an optimality criterion within each
region/catchment. Finally, an integer program is employed to enforce the aforemen-
tioned constraints. To develop the method, we use as a motivating example—which
is in-fact the genesis of this method—the concept and design of the Healthy Water-
ways Ecosystem Health Monitoring Program (EHMP) (Stewart-Koster et al. 2014)
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Fig. 1 Sheldon et al. (2012). Map of the region of interest relative to the continent. Currently sampled sites
(131) are indicated by a diamond symbol and comprise 19 regions. The algorithm described in Section 2
is designed to select 60 sites such that at least one site exists in each of the 19 regions

described in Sect. 2.1. Subsequent subsections of this section detail the components
of the proposed approach.

2.1 Data

The dataset in this application comes from the Southeast Queensland freshwater
Ecosystem Health Monitoring Program (EHMP). The EHMP is a comprehensive pro-
gram that assesses stream ecosystem health based on an average of 16 indicators from
five indicator groups (Abal et al. 2005). The program has been running since 2002
and involves sampling 131 locations across 19 catchments (see Fig. 1), twice per
year (in the austral spring and autumn) to derive the annual ecosystem health score
for each catchment (Bunn et al. 2010). The five indicator groups are water quality,
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macroinvertebrate assemblages, fish assemblages, nutrient concentrations and ecosys-
tem processes. The observed data for each indicator is scored from 0 to 1 against an
ideal, or reference condition, and subsequently averaged up to derive a final score
for each catchment (EHMP 2008). This final score serves as the response variable
for the mixed model discussed in the following sections with explanatory variables
comprising the raw input variables to the various indices.

2.2 Mixedmodels

We apply a regression/mixed model based approach first for variable selection. Then
once the final model is identified, we use that mixed model to develop A-optimality
measures for site selection. Keeping in mind the EHMP scheme detailed in Sect. 2.1
as a motivating example, we use the following notation for indices

Site : i = 1, . . . , n,

Time : j = ti , . . . , Ti ,

Variables : k = 1, . . . , p. (1)

Note the allowance that each site may have a unique beginning and ending sample
date, but we assume that all sites are sampled at the same frequency with evenly
and identically equally spaced intervals. The method is easily extended for deviations
from this assumption and these considerations are addressed further in Sect. 5. Going
forward, we will reference the number of sequential time points for site i as ri ≡
Ti − ti + 1.

Our dependent variable yi j can be viewed as the annual or seasonal score referenced
in Sect. 2.1, which is a summary measure of the raw data collected at each site i at the
j th sampling time. Each variable collected is represented by xi jk : the kth predictor
at site i during sampling time j , with coefficients β1, . . . βp. Explanatory variables
used for the EHMP are included in Sect. 1; these raw variables are the explanatory
variables and consist of various measures of freshwater attributes. To create the score
yi j , measured variables are categorized and within each category are averaged to
create an index scaled to the [0,1] interval. From the sub-indices an overall index of
freshwater health is created.

We denote εi j and νi j as the errors associated with site i at sampling time j , which
collectively form an autoregressive process of order one (AR(1)). With δi representing
the random effect associated with site i , our model is then of the form

yi j =
p∑

k=1

βk xi jk + δi + εi j ,

εi j = ρεi, j−1 + νi j , (2)

with εi j∼AR(1) such that νi j
i id∼ N (0, σ 2

ε ) so COV (εi j , εi j ′) = σ 2
ε ρ| j− j ′|. We

assume for the random effect that δi
i id∼ N (0, σ 2

δ ) and that νi j is independent of
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δi for all j = 1, . . . , Ti ; i = 1, . . . , n. For ease of notation, it is assumed that xi j1 = 1
for all i, j so that β1xi j1 = β1 is a model intercept. Note that model is easily extended
to include random effects for region as well (fixed effects for region can be among the
xi jk); for now our focus is on Model (2).

Based on the usualmixed-model data and error assumptions,Model (2) is estimated
via Maximum Likelihood. For the variable selection stage, initially all covariates can
be considered for the model, then criteria such as The Bayesian Information Criterion
(BIC) and/or Akaike Information Criterion (AIC) can be applied to the likelihood
expression to determine the number of variables to retain in the final model. For
both the selection model(s) and final model, performance can be assessed via cross
validation.However, note that a typical ten-fold cross validation in this case can present
difficulties. Recall one the primary goals of the method: that at least one site in each
region is sampled. Without some sort of constraint, entire sites and even regions can
be eliminated from the training set and removing an entire site/region would make
a prediction for that site/region questionable. Therefore, one possible alternative is a
random selection of observations for a test set and the remainder used for training
the model, ensuring the training set contains at least one observation from each site.
Then this procedure can be replicated. For example, we can generate, say, 200 random
test sets of 100 observations each to run a modified cross validation. To measure
the fit of the model the ratio of mean square error (MSE) of the fitted model to the
mean square prediction error (MSPE) of the test set indicates the degree to which
the error is larger in the prediction of the validation set as opposed to the training
set. Values near one provide evidence that the model can successfully predict out-
of-sample or, alternatively, that the model is not overfitted nor overly influenced by
influential observation(s) should they exist.

2.3 Optimality

After variable selection, to begin to develop a method for site selection, we can draw
on concepts from the design of experiments (DOE) literature. Specifically, one goal
of design of experiments is to choose or find the “optimal” levels of treatments for
experimentation given a fixed set of treatment options, which is analogous here to
selecting the sites to sample based on the data collected at the site. One definition of
an optimal design/site-selection would be one that minimizes the variance/covariance
of the parameters estimated for β1, . . . , βp in Model (2). However, with p variables
we have 1

2 p(p− 1) variance and covariance terms. Thus we require a criterion which
results in the minimization of some sense of all of these terms. To this end, we can
consider various optimality criteria; popular choices from DOE are A-optimality or
D-optimality (see Martin 1986; Kiefer 1974, e.g., respectively), and other measures
exist (such as U-, G-, I-, or S-optimality); any of which provide a scalar measure
of variance/covariance that we can minimize to provide an optimal site-selection.
Presently, wewill use the A-optimal criterion to illustrate themethod (with some notes
on the D-optimal criterion) to select the sites that account for the maximal information
in scoremeasures; any of the other optimisation criteria can easily be interchanged and
a discussion on the use of multiple criteria is addressed in Sect. 5. Regardless, once
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the final model is determined via Sect. 2.2, to determine the variance matrix structure,
consider the matrix formulation of the model introduced in that section:

y = Xβ + Uδ + ε, (3)

where yN×1 is a vector containing the scores yi j for time j at site i ; XN×p comprises
the fixed effects;UN×n is a matrix of indicator variables specifying the whether or not
the observation belongs to site i ; δn×1 as the random effects; and εN×1 as the model
errors for N ≡ ∑n

i=1(Ti − ti + 1) total observations (further detail on Equation (3)
components is found in Sect. 1). Based on this formulation and the error assumptions
from Sect. 2.2, the variance of y is expressed as

V ≡ var(y) = UGU′ + R, (4)

where G ≡ E[δδ′] and R ≡ E[εε′]. The first term matrix in Eq. (4) is a function of
σ 2

δ ; the latter is a block diagonal matrix with diagonal blocks defined by the covariance
structure noted in Sect. 2.2: for each site i , we denote the i th block of the R matrix as
Ri which are of the Toeplitz form with dimensions ri × ri with for j, j ′ ∈ {1, . . . , ri },
have j th row, j ′th column elements σ 2

ε ρ| j− j ′|. As an example, for a “balanced” design
where (Ti − ti + 1) ≡ T ∀i = 1, . . . n (same number of timepoints within each site),
then Ri ≡ RT×T for all i and with the error assumptions stated in Sect. 2.2,

R = σ 2
ε (In ⊗ R)

UGU′ = σ 2
δ (In ⊗ JT ), (5)

with JT defined as a T × T matrix with entries all equal to unity. Note that both
the UGU′ and R matrices resolve to a dimension nT block diagonal matrix with n
blocks of T × T dimension with blocks σ 2

δ JT and σ 2
ε R, respectively. This example

generalizes to the present setting where the number of observations per site varies (see
Appendix Sect. 1).

Based on Eqs. (3)– (5), it is a standard result (see McCulloch and Searle 2001,
e.g.) to show that the variance/covariance matrix for the estimated parameters β̂ is
expressed as

W ≡ var(β̂) = (X′V−1X)−1. (6)

Measures such as the determinant or a function of the trace of the p × p matrix W
provide a scalar measure of the “size” of the matrix and thus are criteria by which
we can solve a minimization problem of the variance. In fact, A-optimality is defined
by the minimization of the trace of W, A = tr(W), while D-optimality requires the
minimization of the determinant of W, D = |W|; In the latter case this is equiva-
lent to minimization of the product of eigenvalues of W; the former case requires
a minimization of the sum of eigenvalues of W. The idea behind either and all of
these methods is to minimize some sense of “average” variance of the coefficients.
Again, here we focus on A-optimality as an example, noting that any other optimality
criterion is equally applicable.
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The optimality criterion can be calculated for each site, then ranked according to
their respective values. Specifically, recall we have defined the number of sequential
time points for site i as ri ≡ Ti − ti + 1, then let xi with dimensions ri × p denote
the covariate observations associated with site i . Then we can construct the ri × ri
covariance matrix associated with that site and the corresponding optimality measures
(again any of the measures noted earlier in this section). With the block diagonal
covariance matrix V as shown in Eqs. (4) and (15), with blocks Vi defined as

Vi = σ 2
ε Ri + σ 2

δ Jri , (7)

a well-known result (see Greene 1994, p. 33. e.g.) is that the inverse is composed of
the inverses of the individual blocks:

V−1 = diag{V−1
i }ni=1. (8)

Then the ri × ri covariance matrices associated with each site i and the corresponding
A-optimality measure is as follows:

wi ≡ (x′
iV

−1
i xi )−1,

Ai ≡ tr(wi ). (9)

Again, we continue to use A-optimality as the illustrative criterion and the per-site
measure applies analogously for other optimality criteria. For example, were we to use
a D-optimality criterion, we could calculate Di ≡ |wi |. Within each catchment/region,
the optimality measure (here, Ai ) can be calculated in order to rank the sites according
to their variability to determine the optimal site(s) in each catchment. Again noting
that the goal is to select one or more optimal sites within each catchment such that a
fixed total of, say, M sites are selected, we can employ the optimality measures in an
integer program to achieve this goal.

2.4 Integer programming

The mixed model of Sect. 2.2 provides a method by which variables can be selected
from the data collected at each site to form a refined model. The resulting covariance
matrix is then used to rank sites within each region according to their contribution
to overall variability as measured by the optimality criterion introduced in Sect. 2.3.
The final component to our method is to quantitatively employ practical constraints to
achieve the overarching goal of reducing the number of sites sampled to a fixed number
M (redundancy) while ensuring that the remaining sampled sites are representative
(each region/catchment is sampled). Here we rely on the method of Linear Integer
Programming: the optimality criterion (OC) values of each site are known using the
method described in Sect. 2.3; the objective of the integer program is to choose sites
among all possible sites whichwill minimize the overall OC value of themodel subject
to these constraints.
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To develop the motivation behind a linear integer program, we will focus on the
A-optimality criterion; the application to other measures is immediate.Wewish to find
an optimal subset of sites fromwhich to collect data, and we have defined optimal here
to mean sites with the lowest OC (A-optimal) values. Going back to multi-variable
calculus, a constrained optimization entails maximizing or minimizing an objective
function by calculating then solving systems of derivatives to find the “zi” values
that optimize the objective function. In our present setting, the “zi” variables simply
indicate whether or not a site is selected, and we weight each of these according to
their Ai value. So our objective function—the one that we would like to be as small
as possible—is A1z1 + · · · + Ai zi + · · · + Anzn . As constraints, we just require that
z1+· · ·+zi +· · ·+zn = Mand that within each region at least one site is represented;
for example, for a region with sites s, q, and r , we require zs + zq + zr > 0. However,
note that our objective function is linear in the arguments zi over which we would like
to minimize. Further, the variables are integer-valued (binary, actually). Therefore,
the usual tools of calculus are unavailable to us so we must numerically minimize
our linear objective function. This is how we arrive at a linear integer program to
determine the sites to be selected. Based on all possible combinations of sites to be
selected, our constraints confine a boundary subset of sites that satisfy these. Then
within this space, the optimal sites are chosen.

Formalizing these ideas, we can express the linear integer program in the following
manner. We will continue to use the index i = 1, . . . , n to denote site i and introduce
the index h = 1, . . . , L to denote a sequence of sets representing the sites in the total
of L catchments or regions. That is, we create L partitions of the i = 1, . . . , n sites
so that each site i is an element of some catchment set h: i ∈ h. We define a sequence
of i = 1, . . . , n variables zi as

zi =
{
1 if site i is selected for sample.
0 otherwise.

(10)

and the indicator function 1{i∈h} as

1{i∈h} =
{
1 if site i is in region h,

0 otherwise.
(11)

UsingAi as defined inEquation (9),we thenhave the following linear integer program:

min
z

n∑

i=1

Ai zi subject to:

{∑n
i=1 zi = M,∑n
i=1 1{i∈h}zi > 0 for h = 1, . . . , L,

(12)

which is a minimization over the sites selected z ≡ [z1, . . . , zn]′.
The extension to a seasonal analysis is straightforward. Continuing with the EHMP

in mind as a motivating example, we consider semi-annual data collection in the
Spring and Autumn, though consideration of other frequencies (quarterly, monthly,
etc.) should follow easily from the following specification. We use the additional
subscript ; q with q ∈ {v, a} to indicate Spring (vernal) and Autumn, respectively, for
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the defined terms in Eqs. (9), (10), and (11). For example, Ai;v and Ai;a indicates
the respective Spring and Autumn A-optimality measure for site i . That is, in much
the same way that a measure Ai can be calculated on all observations/timepoints for
site i as in Sect. 2.3 and Eq. 9, we can calculate the measure Ai;v based on all of the
Spring time points and data associated with site i . Similarly, we define

zi;v =
{
1 if site i is selected for sample in Spring,
0 otherwise.

Using this notation, and again focusing on A-optimality, the optimization is of the
following form:

min
zv,za

[
n∑

i=1

Ai;vzi;v +
n∑

i=1

Ai;azi;a

]
subject to:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1 zi;v = M,

∑n
i=1 zi;a = M,

∑n
i=1 1{i∈h}zi;v > 0 for h = 1, . . . , L

∑n
i=1 1{i∈h}zi;a > 0 for h = 1, . . . , L.

(13)

The linear integer program is the capstone to the method introduced in this paper.
Mixed models are used to select variables and determine a parsimonious model to
predict the dependent variable. Based on the variance/covariances estimates from that
model, site-specific OC values are determined. Finally, these values are inputs to a
linear programwhich determines a subset of sites that account formaximal information
in an effort to reduce the number of sites sample and decrease redundancy. In the next
section, the method is applied to the EHMP data described in Sect. 2.1.

3 Results

In this section, we apply the method of Sect. 2 to the EHMP data and design discussed
in its Sect. 2.1. Of the 131 sites dispersed among 19 regions, the specific goal is to
select a subset of M = 60 sites while at least one site in each region is selected. The
analysis is performed using a combination of software packages: SAS 9.3 for mixed
models and integer programming; R 3.2.2 for calculating A-optimality measures as
well as providing graphics.

Using the notation of Sect. 2.2, our dependent variable yi j is the logit transformation
of the raw semi-annual score described in Sect. 2.1, which we denote here as si j so
that

yi j = ln

[
si j

1 − si j

]
,

with values of si j = 1 set to the value si j = 0.999; the distributions of the raw and
transformed data are shown in Fig. 2.

The logit transformation is employed to satisfy the normality constraints of the
mixed model presented in Section 2.2. The regressors xi jk consist of a constant term,
the raw data collected at each site (see Sects. 2.1 and 1) and a seasonal indicator
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Fig. 2 Raw and logit-transformed seasonal score

(Autumn = 1). The error specifications are those noted in 2.2 and the model applied
then is that of Eq. (2). The original data consists 2890 observations on 131 sites among
19 catchments. Sixteen sites were excluded from the analysis due to one or more of the
explanatory variables being missing for the entire time series of that site resulting in
a reduction of 124 observations. Additionally, 68 observations were removed due to a
missing dependent variable; per site the data were either completely missing, or would
require extrapolation for imputation. Per site, missing values for independent and
dependent variables were imputed via linear interpolation using neighboring values.
The resulting analysis data set thus consists of 2698 observations for 19 catchments
and 115 sites, which are depicted in Fig. 1; the total number of observations per site
varies from 1 to 22 consecutive semi-annual time points. From the original data, only
192 observations were removed resulting in a loss of less than 7%.

After the mixed model is estimated, we employ the integer program described in
Sect. 2.4 and Eq. (12) with n = 115, L = 19, and M = 60. The results of the method
are shown Fig. 3 with black dots indicating the selected sites and white diamonds
denoting those that were not selected. Each region has at least one site selected, and
a total of sixty sites were selected; hence the result satisfies all the requirements.

At first glance, it appears that the method results in the selection of sites that are
closely clustered together geographically. However, recall that the method controls
for optimal selection within each catchment. Therefore while it may appear that the
selected sites cluster around specific geographical regions, these sites actually belong
to distinct catchments and represent the optimal site(s) for that catchment; the algo-
rithm is indifferent to proximity between catchments and focuses on optimality within
catchments. Further, using distance as the sole delineator among sites disregards other
aspects such as elevation, climate, and/or proximity to urban areaswhich clearlywould
distinguish quite distinct ecosystems.

Figure 4 illustrates this feature; depicted therein are the EHMP sites—selected
and otherwise—with additional geographical and geological illustration. It can be
seen that in the Brisbane area (upper inset) that four selected sites in relatively close
proximity exist in actually four distinct catchments with rather different ecosystems.
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Fig. 3 Current EHMP survey sites and candidates for optimality criterion selection. Selected sites: black
dots indicate sites selected via an A-optimality criterion application of the method proposed in Sect. 2.
White diamonds denote unselected sites

Another example (lower inset) displays five selected sites in close proximity. One
of these belongs to the separate Albert catchment; the remaining four are all in the
Logan catchment. Among those four it is clear from the figure that the terrain varies
significantly within a small geographic area and so it makes sense to sample from each.
It is also worth noting that a nearby site (upper-left of lower inset) very near a selected
site is not chosen so that redundancy is removed. Currently our method does not
explicitly incorporate spatial/terrain components and a further iteration method could
incorporate some spatial constraints should proximity be a concern; this is noted in
Sect. 5.
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Fig. 4 Sites within and among catchments: Inspection of Fig. 3may appear to indicate that some catchments
dominate the sites selected and/or that selected sites are clustered. Selected sites appear as green dots and
unselected sites are red dots. This map includes geographic/geological features to illustrate the intuitive
reason for the closeness/farness of selected sites. Upper right: four nearby selected sites are located in
distinct catchments and separated by significant geological features. Lower right: five selected sites. Only
four are in the Logan catchment; despite their proximity, geological features illustrate how they are distinct

4 Simulation

To further assess the proposed method, we design a simulation study to compare
this method with an alternative method. The simulation design is discussed first and
then this section concludes with the simulation results. For consistency, we employ the
notation introduced in Sects. 2.2 and 2.4. It is noted that to generate various quantities,
we use the uniform distribution so that simulated values have greater dispersion than
a distribution like the normal.
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4.1 Simulation design

The following simulation was performed 500 times in two settings and can certainly
be implemented for more. Because of a relatively large number of parameters to
consider—as we will see below—some parameters were selected to remain fixed for
the simulation studywhile other parameterswere specified to vary fromone simulation
to the next.

The first component of each simulation is to define the regions and the site locations.
To define a geography for the simulation we defined the continuous subspace [0, 1]×
[0, 1] ⊂ R2 as the area containing m = 25 regions which were then defined as

[0, 0.2) × [0, 0.2), [0.2, 0.4) × [0.2, 0.4), . . . , [0.8, 1.0) × [0.8, 1.0]. (14)

m = 25 was chosen to reflect the types of studies similar to the EHMP setting that
motivated our method.

Next, for each simulation, locations for n = 400 sites were randomly assigned
by generating 20 random numbers from a uniform[0,1] distribution as a longitudinal
coordinate then also 20 random numbers from the same distribution to generate a
latitudinal coordinate. A large number of sites was selected to motivate the purpose
of the proposed method: to select a much smaller sub-sample of sites that adequately
explain the variation observed in all sites. The number of sites to select is specified
as M = 50 to reflect a manageable subset of the n = 400 to use for continued data
collection.

Finally for the time points of data collection j = ti , . . . , Ti we select j =
1, . . . , T = 20.The reason for such a selection is that 20 monthly observations is
a reasonable choice for sampling designs like the EHMP described in Sect. 1 which
motivated the proposed method.

For the simulated data we selected p = 5 explanatory variables x1, . . . , x5. Initial
values of these variables were generated from 5 non-overlapping uniform distributions
((0, 2), (2, 4) etc.). Then to account for a temporal component over T = 20 time
points the subsequent values for x1, . . . x5 were specified as an AR(1) process with
autoregressive parameters generated from a uniform distribution with boundaries 0.20
and 0.50 to reflect a moderate amount of correlation. The error component of each
AR(1) process is specified as normal N (0, σ = 0.25) to reflect a moderate level of
variability. The score variable y for each site i at each time j was then created as
an index of the explanatory variables and the sum of two error components. Refer to
the model specified in Eq. (2). One error component δi is generated from a normal
distribution N (0, σδ)with a variance parameter unique to each region. This introduces
a spatial component in that values of yi j within the same region follow an identical
variance component. Finally, the second error component εi j is specified as an AR(1)
process with error generated from an N (0, σε = 0.25) and AR parameter ρ = 0.15
which was close to the parameter observed in the application from Sect. 3.

We also considered another simulation setting with an additional seasonal cycle
with period 12. To the error process for y four seasonal indicators were added to
reflect three-month components of four seasons. The additional explanatory variable
was specified as cos( 2π j

12 ) as a continuous cycle with period 12. For ease of distinction
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in the results section we refer to this setting as “with cycle” and the former setting as
“without cycle.”

4.2 Simulation assessment

For each simulation, the method described in Sect. 2 was applied to the simulated data
selecting M = 50 sites based on that algorithm and using A-optimality as the criterion
(other criteria may be used; see Sect. 5). For a model of comparison, two sites within
each of the m = 25 regions were randomly selected. This was implemented because
in the absence of any selection method but with an imperative that the sites must be
reduced to M , a stratified random sample from regions is a reasonable choice. Going
forward wewill refer to this as the “random”method; we refer to our proposedmethod
as the “LP” method.

To compare the two algorithms, three methods of assessment were considered. The
first compares the root mean squared error (RMSE) from the mixed model (Sect. 2.2)
for the selected sites fromboth algorithms for each simulation.We examine the average
of that RMSE over all simulations as well as confidence bounds for each algorithm.
Because single model is used to examine all 400 simulations over 20 times points, we
expect a relatively large RMSE. It is also noteworthy that this is only a comparison on
selected sites.

Notably a thorough assessment will be more reliant on examining non-selected
sites; the motivation for the proposed method is to select sites that still adequately
retain the information from sites that will be discontinued. Therefore, our second
method of assessment is to compare each algorithm on the sites not selected. To do
this, a separate mixedmodel (described above) is fit on the selected sites for each of the
LP method and the random method. Then the non-selected sites for either algorithm
are scored with their respective models. The mean over all mean squared prediction
errors (MSPE) is compared as well as prediction bounds. The preferred algorithm will
have a lower MSPE than the previous assessment method in that separate models are
fit for each of the LP and random selection. This measure accounts for an aggregate
ability to retain the information from sites that will be discontinued.

The third and final assessment provides a regional assessment of MSPE for the LP
and randommethods. For each simulation and each region (500× 25 = 12,500)MSPE
is calculated. The number of times the LPMSPE is less than the randomMSPE divided
by the total number of per site per simulation (1250) creates a proportion estimate
p̂L P . An analogous proportion p̂r is also calculated. Because the regions are from a
fictitious geography and the site locations are randomly assigned we need not examine
each quintet any more closely than the method described here. As an assessment we
consider the proportions themselves, a test of the hypothesis H0 : p ≤ 0.50 and an
associated one-sided 95% confidence region.

4.3 Simulation results

Results for each of the three assessments discussed above are contained in Tables 1,
2, and 3. For the initial assessment on selected sites for both the noncyclic and cyclic
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Table 1 Average RMSE on
selected sites for two simulation
types (Section 4) with +/- 2×
standard deviation.)

Simulation Method Lower Mean RMSE Upper

Without cycle LP 3.315 3.871 4.426

Random 3.460 3.866 4.272

With cycle LP 7.786 8.598 9.411

Random 7.975 8.616 9.257

Table 2 Average MSPE on
non-selected sites for two
simulation types (Section 4)
with +/- 2× standard deviation.)

Simulation Method Lower Mean MSPE Upper

Without cycle LP 0.1856 0.1939 0.2022

Random 0.1865 0.1942 0.2019

With cycle LP 0.4189 0.4340 0.4490

Random 0.4191 0.4341 0.4490

Table 3 Per region proportion of lowerMSPE. For each site for eachmethod (Section 4)MSPE is calculated
for non selected sites. The proportion is calculated as the number of times the LP MSPE is lower divided
by the number of simulations (500) × the number of regions (25)

Simulation Method Proportion Lower Upper p-value

Without cycle LP 0.517 0.510 1.0 < 0.0001

Random 0.482 0.475 1.0 0.9999

With cycle LP 0.510 0.503 1.0 0.0112

Random 0.490 0.4823 1.0 0.9887

95% confidence intervals and hypothesis test H0 : p ≤ 0.50

settingswe see very little difference between the LP and randommethods. Notably this
analysis is restricted to the 50 of 400 sites selected for each method. Further, because
the data is simulated the optimality measures for all sites are much closer than those
observed in the actual EHMPdata. Extensions and alterations of the simulationmethod
are addressed in Sect. 5.

The second assessment results are presented in Table 2. The meanMSPE for the LP
method is lower than that for the randomly selected sites though themargin is relatively
small. However this does show some promise of the LP method to select sites that
represent the behavior on the non-selected sites. The LP method is relatively “cheap”
in terms of implementation and computation. In addition, the conceptual framework
of the method considers a selection procedure more rigorous than simple stratified
sample and produces comparable if not better results.

Table 3 illustrates the third and final assessment of the LP and random methods
described in the previous section. For both the cyclic and the noncyclic settings the
proportion of times that the LP is outperforms the randommethod is significantly (sta-
tistically) greater than half. Proceeding along the reasoning in the previous paragraph,
the LPmodel is preferable to random assignment or at worst is at least as good. Further,
for an easily implementable method the cost is relatively small and presents a method
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more intuitive. Extensions and further work for the overall method are discussed in the
next section including specific considerations for a broader set of simulation studies.

5 Conclusion

Throughout the paper, variousmodifications or further work have been noted and those
are addressed here. We then close with an overall conclusion regarding our proposed
method.

One future consideration concerns the moving of sites. Our work with the EHMP
data had the benefit of multiple years of data onmany stationary sites. As long as those
sites remain and remain in the same location, the model presented here can easily be
updated as new data becomes available and optimized at any time. However, should
sites move or be discontinued, this presents a continuity issue with the current method.
Future work therefore will consider through real and simulated data the artificial
removal or moving of sites to determine its impacts on the method.

While simulation results did show some promise as opposed to random selection,
those resultswere admittedlymarginal. As noted in the initial paragraph of Sect. 4.2 the
proposed method relies on many assumptions and tuning parameters for a simulation.
It is difficult to vary all of these in a simulation. Future work will include simulations
varying subsets of these. Generating an appropriate error process for simulated data
is straightforward. However the design of dependent and explanatory variables that
resemble a setting like the EHMP can present some challenges. A further iteration
of the simulation study will investigate even more realism in the simulated data and
consider explicit spatial correlation.

Another model extension to consider is relaxing some of the mixed model assump-
tions presented in Sect. 2.2, specifically in regard to the model variance structure.
There it was assumed that all sites were sampled at identical frequency and interval,
which motivated the use of the AR(1) variance structure. In the case of missed obser-
vations, it is straightforward to apply either the AR(1) or Toeplitz variance structures
to account for missed observations provided the assumption of identical intervals; it is
even possible to incorporate heteroscedastic error within these structures. Going a step
further if both identical frequency and interval are lost, it is possible to use the first
order ex-ante dependence model to account for this. Any of these modifications are
easily incorporated into the method should the particular data exhibit these structures.

Finally, for illustrationpurposes, our optimality criterionof choicewasA-optimality
and this was the method employed for our demonstration on the EHMP data and the
simulation. There are several other optimality criteria that exist, such as D-, S-, U-,
G-, and I-optimality. An interesting analysis would be to compare multiple optimality
criteria and determine if the selected sites are consistent among the various criterion;
this is an aspect we will consider for future work.

In conclusion, in this paper we have presented an algorithm for site selection that
employs three methods from disparate areas of statistics and operations research.
In order to reduce the number of sites within regions from which data is collected
while retaining maximal information, we use a mixed model approach to derive the
variability per site, an optimality criterion from the DOE literature to essentially rank
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each site by the amount of information it contains, and finally a linear integer program
to select the “best” site(s) within each region subject to a maximum total number of
sites selected. The demonstration of the method was applied to the EHMP data to
illustrate its effectiveness and it was shown that the method works and is an adaptable
algorithm for the desired goal. A simulation study was also employed that showed
some positive results but requires further exploration. It is important to note that the
method is viable and applicable for any casewhere redundancy inmonitoring programs
is suspected and/or a concern.
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Appendix

Annual/seasonal score components

Specific data collected at freshwater sites:

1. pH, Cond, Temp and DO are averaged to obtain the Water Quality Indicator,
2. DelC, R24 and GPP are averaged to form the Ecosystem Process indicator,
3. MacroRich, PET, and SIGNAL are averaged to form the Macroinvertebrate indi-

cator,
4. PONSE, FishOE and PropAlien are averaged to form the Fish indicator, and
5. The index DelN by itself forms the Nutrient indicator.

Matrix model notation for mixedmodels

Section 2.3 introduces thematrix notation in Eq. 3 forModel (2) described in Sect. 2.2.
This section illustrates the explicit components of the y, X, β, U, δ, and ε, matrices
and vectors in Eq. 3 in relation to the scalar notation and indices contained in both of
Sects. 2.2 and 2.3. Based on Indices (1) and Model (2), let

yi = [yi,ti , . . . , yi,Ti ]′,
εi = [εi,ti , . . . , εi,Ti ]′,

denote the ri × 1 vectors for the score y and error terms ε for site i at times ti , . . . , Ti
for ri adjacent and evenly spaced time points. Then the N×1 vectors y and ε displayed
in Eq. (3) for sites i = 1, . . . , n are defined as

y = [y′
1, . . . , y

′
n]′,

ε = [ε′
1, . . . , ε

′
n]′.
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The random effects and regressor coefficients, respectively, are denoted as

δn×1 = [δi , . . . , δn]′,
β p×1 = [β1, . . . , βp]′.

If we denote the ri × p regressor matrix for site i as xi , then the full regressor matrix
X in Eq. (3) is represented by the vertical concatenation of these matrices:

X =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦

N×p

.

Finally, the UN×n matrix consists of 0/1 entries based on whether or not observation
yi j is observed in site i . If we denote an ri × n matrix ui for site i as a matrix with
the i th column equal to unity and all other entries equal to zero, then the U matrix is
represented by the vertical concatenation of these matrices:

U =
⎡

⎢⎣
u1
...

un

⎤

⎥⎦

N×n

.

General covariancematrix for y

Consider ri ≡ Ti − ti + 1, and N = ∑n
i=1 ri for sites i = 1, . . . , n with the matrix

J and matrices Ri of dimension ri × ri defined as in Sect. 2.2. Then the resulting
covariance matrix is expressed as

V = UGU′ + R

⇔

⎡

⎢⎢⎢⎢⎢⎢⎣

V1 0
. . .

Vi
. . .

0 Vn

⎤

⎥⎥⎥⎥⎥⎥⎦

N×N

= σ 2
δ

⎡

⎢⎢⎢⎢⎢⎢⎣

Jr1 0
. . .

Jri
. . .

0 Jrn

⎤

⎥⎥⎥⎥⎥⎥⎦

+σ 2
ε

⎡

⎢⎢⎢⎢⎢⎢⎣

R1 0
. . .

Ri
. . .

0 Rn

⎤

⎥⎥⎥⎥⎥⎥⎦
. (15)
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